I

BIOCHEMISTRY

nit 1:

Introduction to Biochemistry;

Amino acids & proteins: Structure and function, structure and properties of Amino acids, Types of proteins and their classification, Forces stablizing protein structure and shape. Different level of structural organigation of proteins, protein purification and renaturation of proteins: Fibrous and glolular proteins.

Carbohydrates: Structure, function and properties of monosaccharides, Diasaccharides and polysaccharides, Home & Hetro polysaccharides, Mucopolysaccharides, Bacterial cell wall, Glycoproteins and their biological function.

Lipids: Structure and function, classification, nomenclature and properties of fatty acids, essential fatty acids, phospholipids, glycolipids, cerebrosides, cholestrol.

Nucleic acid: Sturcture and functions: physical and chemical properties of Nucleic acids, Nucleosides, Nucleotides, purines, pyrimidines, Biologically important nucleotides, Double helical model of DNA structure and forces responsible for A, B & Z DNA, denaturation and renaturation of DNA.

Enzymes: Introduction, classification & nomenclature of enzymes, role of enzymes in biosynthetic and degradative cellular functions, mechanism and mode of action of enzymes, inhibition and regulation of enzyme action, enzyme kinetics, In vitro activity of purified enzymes and their applications in industry. Various uses of enzymes in food processing, medicines, dignostics and production of new compounds Enzymes as research tools- ELISA methods, modification of biological compounds with the help of enzyme.

Carbohydrate Metabolism: Reactions, energetics and regulation, Glycolysis Fate of pyruvate under arobic and anaerobic conditions. Pentose phosphate pathway and its significance, TCA cycle, Electron transport Chain, Oxidative phosphorylation, Gluconeogenesis, Glycogenolysis and glycogen synthesis, B-oxidation of fatty acids.

UV

tIII.

Paper - 2 Paper - 2 Paper - 2	Maximum Marks 80	
Compulsory questions multiple choice questions covering the entire syllabus Compulsory questions 4 Short answer questions covering the	10 X 1.5 = 15 Marks	
1)3. to 8 long answered questions in two groups covering the entire syllabus,	4 X 5 = 20 Marks	
three to be answered at least one must be from each group Two Internal Assessment often marks each	3 X 15 = 45 Marks Total = 80 Marks 2 X 10 = 20 Marks Total = 100 Marks	S

Group A

MATHEMATICS: II

The set theory; properties of subsets. Linear and geometric functions. Limits and derivatives of functions. The binomial theorem, Logarithm, solution of Linear Equations.

Differentiation & integration; matrices probability classical & axiomatic defination of probability, probability calculation, method of sampling, confidence level, Measurement of central tendencies and deviations.

Group B

Practical Computers :

nit IV-

nit III - General introduction to computers and its function; different components of computers; Basic design of computers.

Classification of computers; digital and analogue computers, Mini, Micro, Main frame & super computers/Programming Logic & Design techniques-Algorithm Flow charts and Pseudocodes.

Computers in online monitoring and automation. Internet, Platform of internets, Ithis, URL, TCP/IP protocol, Ip-adress—

Application of computers in coordination of solute concentration. pland temperature etc of a fermenter in operation.

Demonstration of the above utilities (along with above lectures)

7	Paper- 3					
25		Maximum l	Marks 80			
Time 3h	questions are to be set as follows:					
In all 8 c	questions are to be set us 2000					
at	ompulsory questions multiple choice lestions covering the entire syllabus	10 X 1.5 =	15 Marks			
an en	ompulsory questions 4 Short swer questions covering the tire syllabus	4 X 5 =	20 Marks			
(33. to 8	long answered questions					
co	vering the entire syllabus, ree to be answered.	3 X 15 = Total =	45 Marks 80 Marks			
	•	$\frac{10001}{2 \times 10} =$				
	vo Internal Assessment	Total =	100 Marks			
of	ten marks each CELL BIOLOG	GY TIT.				
	Introduction to modern tools and to	echniques of	cell biology optical,			
Unit 1 -	SEM, TEM. An introduction to cel	l biology, ce	ell as baisic unit of			
	living systems, The cell theory, mo	dern cell bio	ology, Procellular			
	living systems, The cell theory, me	ls				
	evolution, artificial creation of cel Diversity of cell size and shape: s	Lucation AT P	orokaryotic cells			
nit2 -	d Vimia Cyanobacteria Mi	vcopiasma, s	sukai yotio iiiioi ooo,			
	·	d organism a	is different to vois or			
	insting of otherwise genetica	illy similar c	ells, Diochemical com			
	position of cells (Proteins, lipids, carbohydrate, nucleic acid and the					
	(1 !-!!a mool)					
'nit 3 -	o wingtion of cell · Cell wall ce	ll membran	e, ultrastructure and			
,,,,,	contian of call memberane, cytoso	of cell recog	Illion and momorane			
,	transport structure & function of I	nemberane i	outild cent organizates			
	analous (puclear membrane, nucle	ous nucleop	lasm) dolgroodies			
	(structure function including role	in portein sy	ntnesis), Endoplanie			
	estimulum etructure function includ	ling role in f	rotein segregation,			
	mitaghandria chloroplast, lysoson	ne, peroxiso	me, vacuoles, and			
	inchedies non membrane boun	id cell organ	lettes, troosome,			
	cytoskeleton and cell motality micr	otubules int	ermediate filaments and			
	migrafilaments		1. 4			
	Cell growth and division : Cell cy	cle, Kinds	of cell division,			
init IV	Cell Brown and arrivation and cell	ng over sigi	nificance of cell			

init IV

Cell growth and division: Cell cycle, Killus of cell division, amitosis, mitosis, meiosis, crossing over, significance of cell

division. Cell locomotion (amoeboid flagellar, ciliar) muscle and nerve cells, cell senescence and death, cell differentiation in plant & animals

ancer: Carcinogenesis, agents promoting carcinogenesis, characterstics and molcular basis of cancer.

Paper-4

Lime 3hrs Maximum Marks 80 in all 8 questions are to be set as follows:

Compulsory questions multiple choice questions covering the entire syllabus

 $10 \times 1.5 = 15 \text{ Marks}$

Compulsory questions 4 Short 02. answer questions covering the entire syllabus

 $4 \times 5 =$ 20 Marks

(3. to 8 long answered questions covering the entire syllabus, three to be answered.

 $3 \times 15 =$ 45 Marks 80 Marks $2 \times 10 =$ 20 Marks

Two Internal Assessment of ten marks each

Total = 100 Marks

GENETICS

nit 1 - CHistorical development in the field of genetics, organism suitable for ? genetic experimentation and their genetic significance.

> Mendelian genetics: Mendel's experimental design, monohybrid, di-hybrid and tri-hybrid crosses. Laws of segregation and principle of independent assortment, verification of segregates by test and back crosses, Chromosomal theory of inheritance, Allelic interaction, concept of dominance, recessiveness, incomplete dominance, co-dominance, Semi-dominance, pleiotrophy, multiple allel, pseudo allele, essential and lethal genes, penetrance and expressivity.

Non allelic interactions: Interaction producing new phenotype complemtary genes, epistatis, (dominant & recessive) duplicate genes and in bibitory genes.

Genetic organization of prokaryotic, eukaryogic and viral genome, Structure and characteristics of bacterial and eukaryotic chromosome, chromosome morphology, chemical composition, concept of euchromatin and heterochromatin, packaging of DNA molecule into chromosome, chromosome banding pattern, karyotype, giant/ chromosome, one gene one polypeptide hypothesis, concept of

nit II -

Unit III -

cistron, exons, introns, genetic code, gene function. Mutation: Definition and type and causes of mutation, chemical and physical mutagens, induced mutations in plants and animals and microbes for economic welfare of human being. Variation in chromosome structures, chromosomal aberration in human beings, abnormalities - Aneuploidy and Euploidy Sex determination in plants and animals, sex linkage, mechanism environmental factor, Barr bodies, Sex linked gene expression, sex linked inheritence.

Unit IV - Basic microbial genetics, conjugation, transduction, transformation, isolation of auxotrophs, replica plating techniques,

Genetic linkage, crossing over and chromosome mapping.

Extra chromosomal inheritance, population genetics: Hardy-weinberg equilibrium, gene and genotype frequencies.

	Paper-5	Marika	20
fime 3hrs		Maximum Marks	80
In all 8 questions are to be set as fo	ollows:		

Compulsory questions multiple choice ()]. questions covering the entire syllabus

 $10 \times 1.5 = 15 \text{ Marks}$

Compulsory questions 4 Short ()2.answer questions covering the entire syllabus

20 Marks 4 X 5 =

Q3. to 8 long answered questions covering the entire syllabus, three to be answered.

45 Marks $3 \times 15 =$ 80 Marks Total = 20 Marks $2 \times 10 =$ 100 Marks Total =

Two Internal Assessment of ten marks each

MICROBIOLOGY

Fundamentals, History, development and scope of microbiology. Classification of micro-organisms: Microbial taxonomy, criteria used Unit 1 including molecular approaches, classification of bacteria, nutritional classification. Morphology and cell structure of major groups of microorganisms eg. Bacteria type, cell structure, microbial cell surface (gram positive gram negative, ultra structure of flagella, cyanobacteria, protozog, viruses, Archaebacteria, Rickttsias, PPLOs. 7

The concept of sterilization, methods of sterilization (Dry heat, wet Jnit 2 heat, radiation, chemical and filteration etc. cultivation and maintenance of microorganism, nutrilional categories of micro

organism, methods of isolation, purification and preservation. Unit 3 -Microbial growth; Growth curve, measurement of growth and factors affecting growth of bacteria. Microbial metabiolism: Respiration, photosynthesis, Bacterial Reproduction: Transformation, Transduction and conjugation, endospore and sporulation in bacterai. Control of Microorganisms: By physical, chemical and chemotheraputic Unit 4 agent. Pathogenic microorganism: Defence mechanism against microorganisms (Non specific defence only) N2 - Fixing microbes in agriculture. Water microbiology: Bacterial pollutants of water, coliform and non coliforms, sewage composition and its disposal

Food microbiology: Important microorganism in food microbiolgy, moulds, yeast, bacteria, preservation of various types of foods, termentation products of bacteria,

Significance of bacteria.

Paper-6

Maximum Marks 75

Time 6 hrs

BIOCHEMICAL TECHNIQUES VI

- Qualitative tests for carbohydrates, lipids and proteins.
- Quantitative estimation of sugars in given solution 1.
- Quantitative estimation of sugars in biological sample 7
- Extraction and seperation of lipids 1.
- Estimation of Proteins
- Estimation of DNA/RNA
- Isolation and purification of proteins
 - Assay of enzyme activity
 - Kinetic studies on enzyme
- Chromatographic methods for seperation of carbohydrates, lipids, and 1). proteins

ime 6 hrs

Maximum Marks 75

MICROBIOLOGICAL TECHNIQUES WILL

- 1. Cleaning of glasswares
- Preparation of media, cotton plugging and sterilization
- Personal hygiene Microbes from hands, tooth scum, and other body parts.
- Isolation of micro organisms from air, water and soil samples, dilution and pour plating, colony pruification.
- 5. Enumeration of micro organisms. Total V5 viable counts.
- (i. Staining methods: Simple staining, Gram staining, other staining method,
- 7. Isolation of bacteria and their identification
- 8. Growth curve of microorganism.
- Antibiotic sensivity of microbes, use of antibiotic discs.
- 10. Testing of water quality
- 11. Test for antibiodies against given bacteria
- 12. One step growth of bacteriophage.
- 13. Culture from body fluids (stool, urine, blood).
- 14. Alcoholic and mixed acid fermentation.

Paper-8

Maximum Marks 50

PROJECT WORK

VIII.

The students will have to undergo on the job traing in clinic (Hospital) a fermentation plant or bakery. They have to submit its report. A certificate would be usued by the department from the institution providing the training.